CHE-815 Nano Catalysis

Credit Hours: 3 Pre-requisites: Nil Course Objectives:

- Know the fundamental concepts related to catalysis.
- Interpret different phenomena related to catalysts; activation and deactivation processes.
- Be able to propose appropriate active phases to carry out different catalytic reactions.
- Know the different synthesis methods as a function of the catalyst to be prepared.
- Identify the characterization techniques appropriate to be used in solving a specific problem.
- Interpret the information obtained from the application of different characterization techniques and relate it with the behavior of the catalysts

Course Contents:

Introduction:

Concepts in catalysis, Classification of catalysts, Approach to nano-catalysis from molecular and nanostructured systems.

Surface of solids:

Adsorption processes, Elemental steps of the catalytic reactions

Catalysts:

Theory in catalysis, Components, Active phase, support, promoter Activation and deactivation processes, Catalytic differential phenomena associated to the nanostructure

Preparation of catalysts:

Use of molecular precursors in the preparation of catalysts and supported nanoparticles, Impregnation and precipitation methods, Preparation of nanoparticles by electron beam lithography, Other methods of preparation of nanostructured catalysts.

Characterization of catalysts:

Chemisorption methods, Temperature Programmed processes, Transmission electron microscopy (TEM), FTIR and Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Atomic force microscopy (AFM), Scanning tunneling microscopy (STM), Catalytic reactions as a characterization tool. Other techniques of characterization.

Model catalysts:

Nano-catalysis for oxidation, hydrogenation, and other related reactions. Nano-catalysis for various organic transformations in fine chemical synthesis.

Nano-catalysis for carbon-carbon and carbon-heteroatom coupling reactions

Nanomaterial-based photo catalysis and biocatalysts.

Nano-catalysts and nano-biocatalysts in the chemical industry. Nano-catalysts to produce non-conventional energy such as hydrogen and biofuels.

Recommended Reading (including Textbooks and Reference books)

- Nanocatalysis: Synthesis and Applications, Vivek Polshettiwar (Editor), Tewodros Asefa (Editor), Graham Hutchings (Foreword by) ISBN: 978-1-118-14886-0, Hardcover, 736 pages, November 2013.
- Nanocatalysis 2006, H.Heiz, U.Landman, Springer Wiley, 2007.
- Complementary: Spectroscopy in catalysis, J. W. Niemantsverdriet, Wiley-VCH, (2000)